PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Artificial Intelligence to Uncover Fish Responses to Disturbed Flows

The mechanisms of aquatic animal swimming become a central issue for researchers and engineers who wish to develop underwater robotics with superior locomotion capability. Aquatic animals suspended in water are subject to the complex nature of three-dimensional flows, which have the potential to perturb the swimming motions of the animals.

Intelligent Home Network Performance and Security Analysis

Broadband service providers receive many help‐desk calls because of networking issues in their customers' homes, and ever more of those are related to wireless technologies and security issues.

Acoustic Metamaterials and Metasurfaces

Acoustic metamaterials are artificially structured media which can manipulate sound waves in unusual ways. Metasurfaces are thin layers of metamaterials, which enable wave manipulation within a compact structure.

Cloud and cloud shadow removal from optical remote sensing images

The first challenge in information extraction from optical satellite images of the Earth’s surface is the collection of cloud free images, as one third of this data can be affected by cloud cover. Clouds dramatically affect the signal transmission in complex ways due to their different shapes, heights, and distributions and thus contaminate the data from land and water. Cloudy image restoration is a vital step in the remote sensing image processing chain. Correction of cloudy data can substantially increase the number of useable images and pixels available for later applications such as mapping land cover types and sea surface features. Cloud correction techniques

Vibrational nonequilibrium in nozzle flow

Gasdynamic lasers create optical gain from the rapid expansion of gas through a nozzle.  This can produce very high peak laser powers, and makes such lasers potentially useful in a range of applications.  The efficiency of the laser is determined by the ability to create and maintain a nonequilibrium distribution of vibrational energy within such a nozzle.  One effective way of driving the expanding flow is by providing elevated energy with combustion, however, some product species such as water vapour can impair the effectiveness of the rapid flow expansion in creating a population inversi

Investigating Best Practices in Human-Systems Integration and Engineering Methodologies

This project aims at identifying current state of the art human systems integration techniques and creation of framework for an overarching or generalized human system integration framework that can be substantiated for different kinds of systems. Human systems integration practices are very domain specific for example healthcare, defence, aerospace etc.

Flapping Wing Micro Aerial Robots – (II) Wing Actuation and  Flight-Control

The role of robotic systems including miniature unmanned autonomous vehicles is expected to grow significantly in the near future. With rapid advancement in sensor and robotic technologies, unmanned aerial vehicles are envisaged to be assigned various tasks including disaster monitoring, product delivery and, surveillance and reconnaissance.

Performance of axial flow hydrocyclones

Axial flow hydrocyclones have both exits in the same direction unlike the reverse flow hydrocyclones that are commonly used in industry. Early work has shown that axial flow hydrocyclones can reduce pressure drop and the challenge is to optimise the design of the vortex finder and the outlets to improve the separation efficiency so that the axial flow hydrocyclones can be used to separate a wide range of materials including coal, minerals, and waste effluent.

Milimeter wave location-aware communication systems for the fifth generation of mobile communication

The fifth generation of mobile communication (5G) is being designed with a trend towards using millimetre frequency bands (mmWave) with a large number of antennas at the transmitter and receiver. Due to its low scattering and reflective nature, mmWave channels are spatially sparse with communication occurring via only a few propagation paths.

The exponential growth of space objects in near-Earth orbit is placing new demands on space traffic management systems. Instead of hundreds to thousands of objects, future space traffic management systems will be required to maintain and provide a space catalogue of thousands to tens of thousands of objects. Essential to enabling this capability is the simultaneous improvement in current force modelling techniques and a reduction in their computational cost.