PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Fluid-thermal structural interactions on hypersonic vehicles

Flight at extreme speeds challenges the very best of our engineering abilities. The structures of high-speed vehicles are subjected to fluid-thermal-structural interactions in which the deformation of the structure, induced by the aerothermodynamic loads, can in turn influence this flow field and this coupling can detrimentally deform and even catastrophically damage the vehicle. The ability to develop efficient and economical high-speed aircraft is thus limited by our current capabilities in simulating and predicting these complex interactions.

Evolution of water-jets from the centrebow and demihull prior to wetdeck slamming event

Over the past three decades there has been increased military and commercial interest in lightweight high-speed ships, mainly due to their ability to provide fast sea transportation and relatively high payload capacity. Australia is an acknowledged world leader in the innovative design and construction of large high-speed aluminium catamarans, such as the vessels developed by Incat Tasmania and Austal.

Design and Analysis of Efficient Coding Schemes for Internet of Things

The aim of this project is to research coding techniques for device to device cooperative communications in IoT. Specifically, this project will investigate techniques and methods to improve the throughput and efficiency of the cooperative communications in IoT.

Network Coding for Ultra-Low Latency Communications

The aim of this project is to research network coding techniques for ultra-low latency communication systems. Specifically, this project will investigate techniques and methods to improve the latency performance and efficiency of future low-latency wireless communication systems.

Thermal bow in gas turbine components

Gas turbines bend when the are turned off, due to differential cooling. This thermal bow can damage the engines if they are restarted too early, which will reduce their fatigue life and can ultimately destroy them in flight. It is therefore crucial to the safe operation of current and future engines that we improve our abilities to predict this bow and design it out.

Acoustic Metamaterials and Metasurfaces

Acoustic metamaterials are artificially structured media which can manipulate sound waves in unusual ways. Metasurfaces are thin layers of metamaterials, which enable wave manipulation within a compact structure.

Flight control system for UAVs

This research proposes the development and implementation of flight control systems for school’s fixed wing UAV. Currently, we have flight tested fuzzy logic and neural network based controllers for simple flight paths.

Dynamic collapse of metallic lattice structures

Metallic lattice materials have shown promise for lightweight sandwich panels that provide protection against blast and shock propagation. However, little is known of their dynamic spall characteristics (when shock-compressed) and their collapse under dynamic loading.