PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Quasi-normal modes of electromagnetic and acoustic systems

Many physical systems are usefully described by their modes, which are found by solving an eigenvalue problem. This is also true for nano-photonic structures such as metamaterials, nano-antennas and plasmonic particles. However, many systems have strong radiation or dissipative losses, and violate many assumptions which are valid for closed systems.

Signal Processing Techniques for Space Radar Applications

The Southern Hemisphere radar stations in Australia (Tidbinbilla, Parkes and Narrabri) provide a good platform to detect asteroids and study their trajectories and properties. Based on real measurements obtained through these stations, the project aims at providing signal processing tools to analyse planetary radar signals of near-earth objects, i.e., asteroids.

Secure control and estimation

The emergence of technologies relying on information networks have brought into prominence new challenges in the area of cyber-security concerned with security of industrial control and data acquisition systems. This project will involve research into the theory of cyber secure distributed control and estimation systems networks, focused on systems cooperation in the presence of strategic adversaries.

Accelerating hypersonic flight is characterised by rapidly changing flow conditions and high heat loads. To achieve sustained combustion in these engines, fuel injectors must be capable of also rapidly responding to changing flow conditions to ensure efficient and effective fuel delivery is maintained.

This project investigates the use of porous material to actively control the state of the boundary layer under hypersonic conditions. Experiments will be performed in UNSW Canberra T-ADFA and recreated numerically. 

Investigating Application of Possibility theory to Systems Engineering Risk Management

Complex systems are characterized by many future possibilities each with a tiny probability. The traditional risk analysis that considers probability versus impact might not be helpful when the number of futures is too many. This project aims at finding parallel risk management methods based on possibility theory rather than probability theory.

Machine Learning based Real-time Scheduling

Integrated project planning and scheduling is a hot research topic that has provided a blueprint of project’s success that is based on uninterrupted completion of a project. However, in real production, the project environment changes dynamically because of external and internal fluctuations which create interruptions to the process, due to machine breakdowns, sudden material shortage and so on. These disturbances will mean that the optimal process plan and schedule may become less efficient or even infeasible.

Performance of axial flow hydrocyclones

Axial flow hydrocyclones have both exits in the same direction unlike the reverse flow hydrocyclones that are commonly used in industry. Early work has shown that axial flow hydrocyclones can reduce pressure drop and the challenge is to optimise the design of the vortex finder and the outlets to improve the separation efficiency so that the axial flow hydrocyclones can be used to separate a wide range of materials including coal, minerals, and waste effluent.

Satellites provide data and services that are essential to modern society. Our civilian, commercial, and defence capability rely on continued and assured access to space-based infrastructure. The space environment, however, is harsh and represents a significant threat to the operation of such satellites. Collision with space debris, damage to spacecraft components through electrostatic discharge, and communication disruption from atmospheric anomalies are daily threats facing satellite systems and their operators.