PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Satellites provide data and services that are essential to modern society. Our civilian, commercial, and defence capability rely on continued and assured access to space-based infrastructure. The space environment, however, is harsh and represents a significant threat to the operation of such satellites. Collision with space debris, damage to spacecraft components through electrostatic discharge, and communication disruption from atmospheric anomalies are daily threats facing satellite systems and their operators.

Bioinspired Perching and Crawling Drones

Unmanned Aerial Systems (UAS) are the fastest growing sector of aviation with wide-ranging applications. Apart from flight there exists an urgent necessity for multi-role aerial robots. In spite of the rapid advancement in drone technology, there exist significant limitations including their inability to perform multiple roles.

System Architecture Evaluation and Optimization at Early Conceptual Design Stage

Defence systems acquisition is fraught with all sorts of financial, technical and political risks. The most effective way of mitigating risks associated with acquisition of complex systems is through identification of these risks as early as possible. This project’s aim is to facilitate optimal decision making for multi stakeholder system design.

Wave impact loads

This project aims at addressing the lack of high-quality three-dimensional data suitable for benchmarking offshore structures and advanced marine vehicles impacting with water in a 3D regime, as well as establishing an understanding of the key elements influencing the severity of slamming loads. It also aims to evaluate the accuracy of numerical techniques by utilising Computational Fluid Dynamics (CFD) simulations to predict the magnitude of wetdeck slamming forces and pressure distributions, thus allowing designers to improve the fixed, floating and moving marine structures.

Achieving appreciable thrust for both cruise and accelerating flight in scramjet engines is only half the solution for a viable engine. Equally important, is the design and validation of a vehicle structure capable of withstanding the sustained high thermal loads, and the resulting thermally induced structural stresses.

Numerical simulations of surgically changed arteries

In this program, computational structure/structure dynamics and model experiments will be integrated to study the structure dynamic responses, turbulence flows and local stresses with long-term goal of exploring clinic applications. There are more than 30,000 patients receiving artery related implants in Australia, incurring substantial cost for treating and nursing these patients.

Probabilistic Systems Engineering Model: Synthesis and Validation

The aim of this project is to synthesize building blocks of a Probabilistic Systems Engineering Model and its validation. The model would be based on probabilistic success in execution of systems engineering task and resulting rework.

Satellites provide data and services that are essential to modern society. Our civilian, commercial, and defence capability rely on continued and assured access to space-based infrastructure. The space environment, however, is harsh and represents a significant threat to the operation of such satellites. Collision with space debris, damage to spacecraft components through electrostatic discharge, and communication disruption from atmospheric anomalies are daily threats facing satellite systems and their operators.

Fluid-thermal structural interactions on hypersonic vehicles

Flight at extreme speeds challenges the very best of our engineering abilities. The structures of high-speed vehicles are subjected to fluid-thermal-structural interactions in which the deformation of the structure, induced by the aerothermodynamic loads, can in turn influence this flow field and this coupling can detrimentally deform and even catastrophically damage the vehicle. The ability to develop efficient and economical high-speed aircraft is thus limited by our current capabilities in simulating and predicting these complex interactions.

Solving the WiFi Tragedy of the Commons

Cyber-Physical Systems (CPS) are becoming the backbone of our critical infrastructure, for example in health care, emergency services, transportation services, and energy management, as well as in many other areas just being envisioned. The core of CPS operation often lies in the use of wireless technologies such as WiFi, Zigbee, Bluetooth, LTE-U, LoRa, and some varieties of 5G.

Pages