PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Comparative Evaluation of Cybersecurity Test Design Strategies and Analysis Techniques

The pervasive cyber threat to DoDs, public sector and industry means cyber vulnerability and penetration assessment (CVPA) and testing is no longer an option but rather about managing an acceptable risk of how much testing is enough (Christensen, 2017 & 2015).

Thermal bow in gas turbine components

Gas turbines bend when the are turned off, due to differential cooling. This thermal bow can damage the engines if they are restarted too early, which will reduce their fatigue life and can ultimately destroy them in flight. It is therefore crucial to the safe operation of current and future engines that we improve our abilities to predict this bow and design it out.

High-bandwidth control for unmanned helicopters

This PhD work is a part of the project to develop high bandwidth control methods and advanced dynamic modelling for Rotorcraft Unmanned Aerial Vehicles (RUAVs). This will enable new roles such as the precision landing of RUAVs to the moving deck of a ship in rough seas. This and numerous other potential RUAV tasks are presently limited by the simple controllers used for such a responsive dynamic system.

Investigation of Methods and Methodologies for Systems Engineering of Non-functional Requirements

Systems Engineering methodology applies aptly to functional design of systems. However, for non-functional requirements, the current methodology does not have a lot to offer and there is a lack of concrete methodologies for non-functional systems engineering. Specific modularization of systems elements is a powerful tool for the design of the non-functional requirements into the systems.

Mechanical Analysis and Design Optimisation of Composite Structures

The project is concerned with the development of mechanical analysis and design optimisation procedures formulated for composite materials, thin-walled and sandwich structures, hybrid metal-composite structural components with applications in aerospace, marine, offshore, shipbuilding and other industries.

Quasi-normal modes of electromagnetic and acoustic systems

Many physical systems are usefully described by their modes, which are found by solving an eigenvalue problem. This is also true for nano-photonic structures such as metamaterials, nano-antennas and plasmonic particles. However, many systems have strong radiation or dissipative losses, and violate many assumptions which are valid for closed systems.

Real-time Distributed Lifelong Optimisation Algorithms for Swarm Intelligence

A swarm is a group of decentralized decision nodes that need to coordinate and synchronise actions to achieve an effect. One example is in computer Ad-hoc networks where the nodes need to swarm to maximise network throughput. This project aims at designing and proving optimality conditions for new optimisation algorithms.

Signal Processing Techniques for Space Radar Applications

The Southern Hemisphere radar stations in Australia (Tidbinbilla, Parkes and Narrabri) provide a good platform to detect asteroids and study their trajectories and properties. Based on real measurements obtained through these stations, the project aims at providing signal processing tools to analyse planetary radar signals of near-earth objects, i.e., asteroids.

Understanding the first year experience of engineering students

The aim of this project is to investigate the transition experience of students beginning an engineering degree. Of particular interest are the minority groups in engineering: women, mature age students, and at UNSW Canberra, civilian students in an otherwise military cohort.

Pages